
Diving into Educational Robotics with Player/Stage
Carlos Jaramillo

Computer Engineering Department, City College of New York, CUNY
New York, NY 10031 USA

cjarami00@ccny.cuny.edu

Abstract— This paper describes my first research experience in
programming robots by using open-source software tools such as
Player/Stage. Among the educational robots available at
Brooklyn College's Agents Lab, the Surveyor and the Scribbler
were preferred. Eventually, the project focused itself on
implementing a plug-in driver for the Surveyor robot so that it
could be controlled via Player/Stage. A Player/Stage-based GUI
console - to remotely control the surveyor and other robots with
similar actuators and sensors – was also developed although for
now it lacks some features that could allow Simultaneous
Localization and Mapping (SLAM) for Urban Search and
Rescue (USAR) missions.

Keywords— Player/Stage, surveyor, SRV-1, Scribbler, driver,
SRVjoy, educational robotics, open-source, USAR, Brooklyn
College, Sklar

I. INTRODUCTION

This document is a final report from my summer 2009
distributed research experience as an undergraduate student.
My mentor, Elizabeth Sklar, Ph. D, from the Dept. of
Computer Science at the City University of New York's
Graduate Center, directed my effort in this project for
adapting drivers for the small educational robots available at
the lab into Player/Stage [1] – a robot server and simulation
software – and eventually designing and implementing a
graphical user interface (GUI) for a human operator to send
commands and receive input from the robot(s) under control
via the Player server.

The Agents Lab at Brooklyn College has at researchers'
disposition a wide range of robots. Among the small robots –
employed in some CIS courses such as Exploring Robotics
(CC 30.03) [2] and also used during the Bridges High School
Workshop [3] – are the LEGO's Mindstorms RCX Robotics
Invention System [4], IPRE's Scribbler [5] and Surveyor
Corporation's SRV-1 [6]. By trying these robots through their
available tools, we decided to give priority to the Scribbler
(Fig. 1) and the SRV-1 (Fig. 2) due to their open-source
centric implementations.

 Fig. 1 Scribbler robot with Fluke Fig. 2 SRV-1 robot (ARM-7 proc.)

The readily existing drivers are written in C/C++ and the
existing simulators use Open GL. For instance, the Myro
library [7] already provides a driver implementation for the
Scribbler written in Python, and Surveyor Corp. provides its
own implementation of drivers, firmware, and console
applications to control the Surveyor robots. In addition, Prof.
Sklar and her research colleagues have already adapted their
own C/C++ libraries to interface the Scribbler and the SRV-1
as explained in [8], and this software can be obtained freely at
[9].

II. PLAYER/STAGE

[1] “The Player Project creates Free Software that enables
research in robot and sensor systems. The Player robot server
is probably the most widely used robot control interface in the
world. It supports a wide variety of hardware, also C, C++,
and Python programming languages are officially supported.”
Stage is Player's 2-D simulation backend, and Gazebo is its
3-D simulation environment. [10] explains thoroughly the real
reusability and abstraction layer that the Player/Stage tools
can provide for the robot-application programer. Besides, the
ability to simulate algorithms for autonomous robot
navigation, and other sensing behaviors such as distributed
perception – in the case of multiple-robot environments – are
just a few of the numerous reasons why we decided to focus
on Player/Stage.

At Brooklyn College, there are already courses such as
Introduction to Artificial Intelligence (CIS 32) [11], that use
Player/Stage to simulate AI fundamentals. Now, the task at
hand is to implement drivers for these educational robots so
they can be used with the Player/Stage API and thus take
advantage of the abstraction from hardware complexity and
the reusability of code in order to develop reusable controllers
(brains) for these and other robots.

III. SURVEYOR PLUGIN DRIVER FOR PLAYER

[12] and [13] introduce the key concepts involved in the
process of writing Player/Stage drivers for other robots
besides the ones that currently exist in the official releases of
the Player package, like in the case of the Roomba robot, for
example.

A. About the Surveyor SRV-1

Fig. 2 shows a SRV-1 robot, which resembles a small
military tank with treads. Only the first generation of the
SRV-1 robots are available in the lab. These have an ARM-7
processor on-board, but due to this limited processing power,

all of the data collected by its sensing devices are generally
processed by the Player server running wirelessly on an off-
board computer. Thus, the SRV-1 communicates serially with
the controlling computer via an XBee radio dongle. The SRV-
1 also has a low-resolution camera and four infra-red sensors.
This 4-wheeled robot has two treads on each side that improve
its traction on rescue arenas. We want to use the camera as its
main sensing device to interface with Player/Stage for SLAM
(simultaneous localization and mapping) capabilities.

B. Inheriting from Player's Driver Class

The driver acts as a proxy between the robot's hardware
interfaces and the function calls to the Player server. In order
for Player to be able to understand such driver
implementation, it must inherit from Player's “Driver” class.
For portability reasons, the SRV-1 driver is being
implemented as a plugin driver rather than as a statically
linked one. A plugin driver is compiled as a shared-object that
is dynamically linked to the Player server's driver table at run-
time. We specify the use of this plugin driver through the
configuration file that is passed when we start up Player from
the command line, as following:

$ player surveyor.cfg

The surveyor.cfg in Fig. 3 is an example configuration file
with various options, in which the shared-library for this
plugin driver is named libSurveyor_Driver.so

 driver
 (
 name "surveyor"
 plugin "libSurveyor_Driver.so"
 provides ["position2d:0" "camera:0"]
 port "/dev/ttyUSB0"
 image_size "320x240"
)

Fig 3. Example of surveryor.cfg file for a plugin driver

Upon loading a plugin driver, the Player server calls the
"player_driver_init" method, whose main purpose is to initiate
the registration of the driver into the given driver table by
calling the “Surveyor_Register” function. By passing the
corresponding configuration file to this registering function,
the name of the driver – specified to be “surveyor” in this case
– is then passed to the driver class factory function
"Surveyor_Init", which returns a pointer (as a generic
Driver*) to the new instance of this driver.

After the driver has been instantiated and its central thread
has been started by the Setup() function, the remaining
processing is handled by the Main() method, which primarily
consists of a loop that usually consists of 3 steps:

1. sensor and state data are collected, then
2. collected data are published to the relevant devices,
3. and finally, incoming messages are processed.

A brief list of the Driver class' methods that need to be
implemented is given in Table 1.

TABLE I
INHERITED “DRIVER” CLASS FUCTIONS

Name Brief Description
 Public Member Functions:
Surveyor
(ConfigFile *cf,
int section)

Constructor for the Surveyor
multi-interface driver.

int
Setup ()

Set up the device and start the
device thread by calling
StartThread(), which spawns a
new thread and executes
Surveyor::Main(), which contains
the main loop for the driver.

int
Shutdown ()

Shut down the device.

int
ProcessMessage
(QueuePointer
&resp_queue,
player_msghdr *hdr, void
*data)

Message handler that sends a
response if necessary using
Publish(). This function is called
once for each message in the
incoming queue.

 Private Member Functions:
virtual void
Main()

Main "entry point" function for the
driver thread created using
StartThread() within the Setup()
function

 Server and Plugin-Specific Hooks
int
player_driver_init
(DriverTable* table)

Initiates the registration of the
driver into the given driver table.

void
Surveyor_Register
(DriverTable *table)

Driver registration function that
adds the driver into the given
driver table

Driver*
Surveyor_Init
(ConfigFile *cf, int section)

Factory creation function that
instantiates the Driver

The communication procedures for the SRV-1 are defined
outside the inherited driver class. Although this separation is
not necessary, it purely allows for a more object-oriented
programming practice. Most of the control protocol for the
SRV-1 are single character commands that are sent to the
robot and acknowledged back with a '#' character followed by
the original command. For example, the command: 'Mabc'
implies direct motor control, so the acknowledge response
would be just '#M'

In this example, the 'abc' parameters are sent as 8-bit
(1-byte) binaries that specify the following:

a=left speed, b=right speed, c=duration*(10milliseconds)
where speeds are 2's complement 8-bit binary values, so

0x00 through 0x7F are used to move forward,
0xFF through 0x81 are used to move in reverse,
Thus, the decimal equivalent of the 4-byte sequence (in hex

notation) 0x4D 0x32 0xCE 0x14 is equivalent to 'M' 50 -50
20, which means “rotate right at 50% speed for 200ms”. A
duration of 00 would imply to be infinite. Hence, the 4-byte
sequence 0x4D 0x32 0x32 0x00 = M 50 50 00 drives the
SRV-1 forward at 50% speed indefinitely.

C. Results

The Player driver for the surveyor SRV-1 was initially
tested with Player's CLI (command line interface) utilities
such as playerjoy and playercam. Obviously, any other
controller for Player can do the job as long as the interfaces
are properly provided in the configuration file as indicated
previously. Thus, the robot is capable to move around in
various directions on the plane, but for now it does not support
odometry to tell its exact 2-D position in the physical world
because these particular SRV-1 robots' actuators are only
regular DC motors instead of the more precise servo-motors
that can provide exact positioning data. We also know that the
IR sensors are not reliable enough to use them as range-
finding interfaces. For now, this implemented Player/Stage
driver lacks of the infrared interface. Also, the camera's frame
rate appears very low at the moment (around 1 fps), yet it is
known to be capable of faster rates.

IV. SRVJOY: A PLAYER GUI CONSOLE TO CONTROL THE SRV-1

Since we wanted a GUI (graphical user interface) that
would allow a human operator to drive the robot and take
snapshot images from the camera as well as to be presented
with a live-video feed that can, eventually, be integrated with
SLAM capabilities – to be added to the “Stage” simulator in
future projects – SRVjoy is a GUI console written with Nokia's
QT, an open-source and cross-platform GUI library.

SRVjoy can also control any other robot that has Player
drivers and provides similar interfaces. For now, it only
supports position2d and camera interfaces, and can connect to
a robot through Player's default port number "6665" being
served on the "localhost". Thus, the operator can drive the
robot around (controlling both linear and angular speeds), and
take snapshot images from the robot's camera. A video feed –
native to the console – has not been implemented, yet
playercam can be used externally at the same time SRVjoy is
running.

The navigation can be done through the console buttons in
the GUI shown in Fig. 4, or by using some assigned keys in
the keyboard (The numeric keypad is the preferred choice at
the moment).

The SRVjoy console operates in the following way:
– All control buttons have icons that show their

moving directions. By pressing a direction button,
the robot moves in that direction for as long as the
button remains pressed.

– Speed (linear and angular) can be controlled with the
sliders.

– The camera button will take a snapshot of the current
camera view and save it as camera####.jpg in the
root folder of the executing program.

NOTE: There is some delay for snapshots (the
obot has to focus first, and then shoot), and
sometimes the order of pictures appears shifted.

– Numkeys also resemble the layout of the console
buttons, so they can be use to control the robot in a
similar manner.

Fig 4. Screenshot of the SRVjoy Console

V. CONCLUSIONS

At first, the research experience took me in several
directions until getting acquainted with the variety of
software that can be employed to interact with these small
robots. As explained throughout this report, Player/Stage was
the preferred tool to dive into, as it provides the right
abstraction from the hardware details and presents a uniform
API to the user. As a Computer Engineering major, I found
myself deeply interested in swimming across this abstraction
layer - where hardware meets software – by writing drivers
that can fill this void at the valley of the unsupported robots
and Player, “One Hell of a Robot Server”

There is more to be done to achieve a more polished
functionality of the SRV-1 driver and the SRVjoy console,
and I feel that leaving the source open at hands of the GNU
General Public License can assure that this goal is reached at
some point by the joined efforts of the open-source
community. All source code and documentation (at the time of
this writing) is freely available on my DREU Project's website
at http://agents.sci.brooklyn.cuny.edu/~cjaramillo/project.php

ACKNOWLEDGMENT

Thanks to John Cummins for his devoted guidance and the
work he has done –working in conjunction with professors
Sklar and Parsons– for the C/C++ libraries for the Scribbler
and SRV-1 robots. The clarity of his comments in the source
code allowed me to understand the underlying communication
procedures between the robot's firmware and the higher-level
libraries. Also, thanks to Michael Jansen for the original
implementation of the surveyor driver for Player/Stage that
can be informally found in the Surveyor forums.

REFERENCES

[1] (2009) The Player Project website. [Online]. Available:
http://playerstage.sourceforge.net

[2] Exploring Robotics (CC 30.03) course website [Online]. Available:
http://agents.sci.brooklyn.cuny.edu/cc30.03/

[3] Bridges High School Workshop website. [Online]. Available:
http://bridges.brooklyn.cuny.edu/index.php/home

[4] Lego Education website [Online]. Available:
http://www.legoeducation.com

[5] Surveyor Corporation website. [Online]. Available:
http://www.surveyor.com/

[6] Institute for Personal Robots in Education (IPRE) website. [Online].
Available: http://roboteducation.org

http://playerstage.sourceforge.net/
http://roboteducation.org/
http://www.surveyor.com/
http://www.legoeducation.com/
http://bridges.brooklyn.cuny.edu/index.php/home
http://agents.sci.brooklyn.cuny.edu/cc30.03/

[7] Scribbler's Myro [Online]. Available: http://wiki.roboteducation.org/
Myro_Reference_Manual

[8] John Cummins, M. Q. Azhar, and Elizabeth Sklar, “Using Surveyor
SRV-1 Robots to Motivate CS1 Students,” AAAI.org, 2008

[9] Surveyor Robot Software from the Agents Lab at Brooklyn College.
[Online]. Available:
http://agents.sci.brooklyn.cuny.edu/robotics.edu/bcsoftware.php

[10] Brian P. Gerkey and Richard T. Vaughan, “Really Reusable Robot
Code and the Player/Stage Project.” Software Engineering for
Experimental Robotics Springer Tracts on Advanced Robotics,
Springer, 2006.

[11] Introduction to Artificial Intelligence (CIS 32) course website.
[Online]. Available:
http://www.sci.brooklyn.cuny.edu/~parsons/courses/32-spring-2009/

[12] Player/Stage Drivers: Writing a Player Plugin from the Penn State
Robotics Encyclopedia RoboWiki. [Online]. Available:
http://psurobotics.org/wiki/index.php?title=Player/Stage_Drivers

[13] Jonas Fonseca and Bue Petersen, “Writing Player/Stage Drivers: a
howto for ERSP Player Driver Source Package,” From the project:
Player/Stage - Player driver implementation for ERSP, 2006

http://psurobotics.org/wiki/index.php?title=Player/Stage_Drivers
http://www.sci.brooklyn.cuny.edu/~parsons/courses/32-spring-2009/
http://agents.sci.brooklyn.cuny.edu/robotics.edu/bcsoftware.php
http://wiki.roboteducation.org/Myro_Reference_Manual
http://wiki.roboteducation.org/Myro_Reference_Manual

